skip to main content


Search for: All records

Creators/Authors contains: "Lazarus, Brynne E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite broad recognition that water is a major limiting factor in arid ecosystems, we lack an empirical understanding of how this resource is shared and distributed among neighbouring plants. Intraspecific variability can further contribute to this variation via divergent life‐history traits, including root architecture. We investigated these questions in the shrubArtemisia tridentataand hypothesized that the ability to access and utilize surface water varies among subspecies and cytotypes.

    We used an isotope tracer to quantify below‐ground zone of influence inA. tridentata, and tested whether spatial neighbourhood characteristics can alter plant water uptake. We introduced deuterium‐enriched water to the soil in plant interspaces in a common garden experiment and measured deuterium composition of plant stems. We then applied spatially explicit models to test for differential water uptake byA. tridentata, including intermingled populations of three subspecies and two ploidy levels.

    The results suggest that lateral root functioning inA. tridentatais associated with intraspecific identity and ploidy level. Subspecies adapted to habitats with deep soils generally had a smaller horizontal reach, and polyploid cytotypes were associated with greater water uptake compared to their diploid variants. We also found that plant crown volume was a weak predictor of water uptake, and that neighbourhood crowding had no discernable effect on water uptake.

    Intraspecific variation in lateral root functioning can lead to differential patterns of resource acquisition, an essential process in arid ecosystems in the contexts of changing climate and seasonal patterns of precipitation. Altogether, we found that lateral root development and activity are more strongly related to genetic variability withinA. tridentatathan to plant size. Our study highlights how intraspecific variation in life strategies is linked to mechanisms of resource acquisition.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Abstract

    Climate warming is expected to stimulate plant growth in high‐elevation and high‐latitude ecosystems, significantly increasing aboveground net primary production (ANPP). However, the effects of simultaneous changes in temperature, snowmelt timing, and summer water availability on total net primary production (NPP)—and elucidation of both above‐ and belowground responses—remain an important area in need of further study. In particular, measures of belowground net primary productivity (BNPP) are required to understand whether ANPP changes reflect changes in allocation or are indicative of a whole plant NPP response. Further, plant functional traits provide a key way to scale from the individual plant to the community level and provide insight into drivers of NPP responses to environmental change. We used infrared heaters to warm an alpine plant community at Niwot Ridge, Colorado, and applied supplemental water to compensate for soil water loss induced by warming. We measured ANPP, BNPP, and leaf and root functional traits across treatments after 5 yr of continuous warming. Community‐level ANPP and total NPP (ANPP + BNPP) did not respond to heating or watering, but BNPP increased in response to heating. Heating decreased community‐level leaf dry matter content and increased total root length, indicating a shift in strategy from resource conservation to acquisition in response to warming. Water use efficiency (WUE) decreased with heating, suggesting alleviation of moisture constraints that may have enabled the plant community to increase productivity. Heating may have decreased WUE by melting snow earlier and creating more days early in the growing season with adequate soil moisture, but stimulated dry mass investment in roots as soils dried down later in the growing season. Overall, this study highlights how ANPP and BNPP responses to climate change can diverge, and encourages a closer examination of belowground processes, especially in alpine systems, where the majority of NPP occurs belowground.

     
    more » « less